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Abstract

For high dimensiona4 or nonlinear problems there are serious limita-
tions on the power of-avilable computational methods for the optimiza-
tion or parametric optinIzation of stochastic systems of diffusion type.
The paper develops an eflqctive Monte Carlo method for obtaining good
estimators of systems sensitivities with respect to system parameters,
when the system is of inter~t over a long period of time. The value of the
method is borne out by nu nerical experiments, and the computational
requirements are favorable with respect to competing methods when the 5
dimension is high or the nonlinearities 'severe'. The method is a type 0---"
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appear in the dynamics. Under appropriate conditions, it is shown that
the invariant measures are differentiable with respect to the parameters.
Since the basic diffusion (or other) model cannot be simulated exactly,
simulatable approximations are discussed in detail, and estimators of the
derivatives of the cost functions for these approximations are obtained
and analyzed. It is shown that these estimators and their expectations
converge to those for the original problem. -Tmis we prove a robustness / .

result for the sensitivity estimators, namely that the 7-n of the /1.
ergodic cost functions (and their estimators) for the simulatable approxi-
mations converge to those for the approximated process. Such results are
essential if a simulation based method is to be used with confideaee..
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1. Introduction

This paper is concerned with a key question in the use of recursive Monte

Carlo methods for system optimization, when the system operation and cost are

of interest for a long period of time. For many control systems, the control is

given a-priori in a parametrized form and for the use of Monte Carlo methods for

the optimization of the parameter, one needs good estimators of the derivatives

of the cost function with respect to the parameter.

Reference [1] develops a very useful method for doing this, when the system

is of the diffusion or related type, and the control interval of concern is finite.

Numerical approximations to the unbiased estimators were developed and an-

alyzed, and simulations showed that the method can be superior to competing

methods if the system dimension is large or the system nonlinear. In this paper,

the results of [1] are extended to the ergodic cost problem. New difficulties arise,

since we need essentially to deal with derivatives of the invariant measures with

respect to the control parameters and with the convergence of suitable com-

putable approximations. Owing to these "ergodic" problems, the assumptions

are stronger here than in [1].

Let x(.) be defined by the diffusion

(1.1) dx = b(x, a)dt + o(x)dw, r E R',

where a(x) = u(x)o'(z) is non-degenerate and a is a control parameter to be

chosen. For each a of interest, let x(.) have a unique invariant measure p(Q).

Precise conditions will be given below. For 'smooth cost rate' k(.), define the

"ergodic cost"

(1.2) (p(a),k(a)) p(dxa)k(za) k(a).
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We wish to get an unbiased estimator of ak(a)/c9a (as well as reasonable 'nu-

merical' approximations from sample simulations) at selected values of c. Such

estimators are necessary if we wish to minimize kf(a) over a by some recursive

Monte Carlo (stochastic approximation) method.

Control problems are frequently of this type; i.e., the control is given in a

parametric form. Often, a full optimal feedback control is not desired since

it might be very hard to implement and all the state variables are not avail-

able But a good class of parametrized controls might be known. See [1] for

some examples and further motivation, as well as a discussion of alternative

approaches.

Generally, one cannot easily evaluate k(a) or its derivatives. Then one might

seek a method for getting good estimators which can be used in a recursive

Monte Carlo optimization method. The ease of getting the estimates and their

quality are key issues in such an approach. The estimators are to be obtained

by simulations of (1.1) or of approximations to (1.1), since the solution of (1.1)

can not be known exactly.

Reference [1] developed a general "likelihood ratio derivative" based method

for getting such estimators, under conditions which are much broader than those

used in this paper, but for a 'finite time' problem. The numerical data in [1),

and that obtained subsequently, show that the method can be quite superior

to its competitors for non-linear and high dimensional systems. The quality of

the estimator is judged by the "variance per CPU time required." The reader is

referred to [11 for more motivation and examples. The ergodic cost problem is

harder and requires stronger (hence, the non-degeneracy) conditions. Actually,

the method has been successfully tested on many degenerate problems of the
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type used in [1]. so that the conditions which our analysis requires can undoubt-

edly be weakened. There are ready extensions to the jump-diffusion, reflection

and other standard models. In order to introduce the idea, we give a brief infor-

mal review of one idea in [1], but using our slightly different terminology, and

under stronger conditions than used in [1].

For given T < cc, define the "finite time" costsT
C(z, a) = k(x(s), a)ds + ko(x(T), a),

(x, a) = E.C(x, a),

where E' denotes the expectation with parameter a and x(O) = z. We always

use a 0 to denote the point at which the derivative is to be taken. With no loss

of generality a will be a real number, since for the vector case we can estimate

the derivative for each component separately. Let P2(T) denote the measure

induced by the solution to (1.1) with the initial condition x(O) = x, on C'[O, T],

the space of Rr-valued continuous functions on [0,71, with the sup norm. Let

b(x,a),k(x,a) and ko(x,a) be a-differentiable and define a = ac + 6a and

6b(x,ao,6a) = b(x,ao + 6o) - b(xao). DefineT
(0, T; ao, eba) = [1 (x(s))6b(x(s), ao, 6 a)]'dw(s)

- T -o (x(s))6b(x(s), ao, 6a)I2ds,

and the Radon-Nikodym derivative

(1.3)dP2 °+"(T)

(1.3) dP2 0 (T) = exp (O,T;ao,6a).

Define Z(.) by T
(1.4) Z(T, ao) = [-(z(s))b,,(x(s),ao)]'du,(s)
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- [b'(s), ao)a(x(s))][dz(s) - b(x(s), ao)ds].

We use the subscripted b,(z, ao), etc., to denote the a-derivatives at ao. Then

the quantities

T

(1.5) Q(ao) = JO[k(z(s), ao)Z(s, ao) + ko(x(s), ao)Ids

+ ko(x(T),a o)Z(T, ao) + ko,.((T), ao),

(.') (ao) = IT [(k(x.(s), ao) - k(x(s), ao))Z(s, ao) + k,,(x(s), ao)J ds

+ (k1o(x(T), ao) - ko(x(T), ao))Z(T, ao) + ko,.(x(T), ao),

where we use

k(z(s), ao) = E,'ok(z(s), ao),

are unbiased estimators of Cc,(z,ao). Thus, if a path of x(.) is available, one

can calculate or approximate (1.5) or (1.5').

In order to avoid the very time consuming task of evaluating (from the

simulations) k(x(s), ao) for each s < T, in (1.5'), we usually use k(x(T), ao) in

place of k(x(s), ao), and with good results.

Generally, paths of the true model z(.) are not available, and one can only

approximate via a numerical method (say, a discrete time approximation). Ref-

erence [1] discusses two basic classes of such approximations and proves that

the estimators obtained from them are good. Getting good estimators is more

difficult for the ergodic problem, since we also need to truncate the infinite time

interval and approximate (at least implicitly) derivatives of invariant measures,

a non-trivial problem.
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The proofs use a representation of the invariant measure of the diffusion

process in terms of that of an imbedded Markov chain, defined by the random

return times to a "recurrence set", as well as certain Girsanov transformations

defined on these "return intervals". In order to be sure that these transforma-

tions are well defined, a bound on an exponential moment of the return time is

needed. This is provided by the stability result in Section 2. Section 3 is con-

cerned with ergodic properties of the diffusion model. The imbedded Morkov

chain is defined, and the invariant measure of the diffusion is defined in terms of

this Markov chain, and the needed recurrence (0-recurrence) properties of the

chains are stated. Section 4 is concerned with the existence of the derivative

of the invariant measure of the diffusion with respect to the parameter. The

differentiability is first shown for the invariant measure of the imbtdded chain,

and then this is used to get the result for the diffusion. The differentiability

is in two senses, setwise convergence and weak convergence. Some prdiminary

results concerning equicontinuity of certain sets of functions and invertability of

the operator I - P(o0) (defined in the section) are first proved. It is also shown

that the derivative of the invariant measure can be well approximated by the

derivative of the transition function for larg- enough time.

Since the diffusion model is an "ideal" model and the paths can at best be

approximated in some statistical sense, one needs to know that the natural ap-

proximations can be used with confidence in any implementation. Reference [1]

dealt with two types of approximations, a discrete time model and a Markov

chain approximation. Either can be used here, but we restrict our attention

to the first approximation. The model is introduced in Section 5, and some

preliminary sensitivity results are stated there. Some needed stability estimates
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(analogous to the estimates of Section 2), uniform in the approximation param-

eter, are obtained in Section 6. The main theoretical results for the approxima-

tions are in Section 7, where, after getting some preliminary results concerning

the rate of convergence of certain quantities to their "invariant means", it is

shown that the invariant measure of the discrete time approximation is differ-

entiable with respect to the control parameter, that the derivatives converge to

the derivative of the invariant measure of the diffusion, as well as results con-

cerning finite time approxima.ins. The results imply an important robustness

of the derivatives with respect to the model. This is a new result and a very

useful one fron the point of view of applications, since otherwise general results

concerning the existence of the derivatives for the ideal model would not have

much practical relevance.

Numerical data is given in Section 8. The basic method of implementation

requires the use of a discrete parameter approximation, over a finite time period.

The period needs to be large enough to capture the "ergodic effects". Two

methods are compared; a finite difference method, which has been altered to be

fairly efficient, and several forms of our method. The comparison depends on the

problem, but it is clear that for a large class of nonlinear problems, our method

is preferable. One should note that reasonable examples can be constructed so

that any chosen method works best, so that one needs to keep an open mind in

any application.

The analysis has been restricted to nondegenerate diffusion models, but a

similar analysis can be carried out with various related process, provided only

that ergodic results analogous to those of Section 3 are available.
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2. Stability of x(.)

In order to develop the ergodic results and use a Girsanov measure transfor-

mat' a method on random unbounded intervals, suitable stability properties of

x(.) need to be proved. We will use the following assumptions. The parameter

a will be confined to a compact interval A0 with a0 in its interior.

A2.1. b(.) and o(.) are continuous, o-(.) is bounded and o(x)o'(x) = a(z) >

eo' for some eo > 0. For some K < c, lb(x,a)l < K~jx + K.

A2.2. (ii) has a unique weak sense solution for each x(O) = z and a E A0 .

A2.3. There is a twice continuously differentiable Liapunov function 0 <

V(x) - o as Ix--, oc and E, > 0 such that

(a) V (x) is bounded and continuous,

(b) V',(x)b(x,a) 5 -el < 0 for large Ixl, a E A0 ,

(c) li'xl-l_ sup Ii/(z)I2/IK(x)b(z,a)I < oo,
aEAo

(d) limkV._ sup 1,(x) .a(x)I/IjV(z)b(x,a) < 2.
OEAo

A2.4. When b(z,a) 0- , (1.1) has a unique weak sense solution for each

x = x(0).

A2.5. There is a bounded continuous funcion b0 (.,ao) such that as 6o - 0

6b(z, ao, 6a)/6a - b,(x, ao)

boundedly, and uniformly on each compact x-set.

Remark on (A2.3). The condition does not seem to be very restrictive. It

holds, in particular, for the linear case b(x,o) = A(a)r, where A(a) is 'uniformly

stable' for a E A0 .
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Remark on (A2.2). (A2.4) and the stability Theorem 2.1 imply (A2.2),

but it is useful to isolate it as a separate condition.

Theorem 2.1. Assume (A2.1)-(A2.3). There is a compact set Q which is

the closure of its interior such that for each compact Qi D Q and rl defined by

r, = min{t:z(t) E Q}, we have for small p > 0

(2.1) sup sup Eexppri < oo.
oEAa zEQi-Q

Proof. Let £ denote the differential generator of z(.): £f(z) = f.(x)b(x, o)+

'trace f,(') • a(z). Then

,e,'V x) = pepv(z ) [V'(x)b(x, a)

+ ptrace(V,(z)V'(z)) , a(x)/2 + trace V (x) • a(x)/2].

Let Q be large enough and p small enough such that for z V Q (use (A2.3)) and

some A > 0,

(2.2) £e"V(x) < -pAe Pv (z).

It then follows that for small p and x V Q

(2.3) C [e' p v(r)] <5 0.

From (2.3), It6's Lemma and a stopping time argument it follows that

(2.4) Eaexkp r, < Eor~ePVp '(r(r )) < eP" (-r)

for small p and x = x(0) V Q, which yields the result. Q.E.D.

Corollary. Assume (A2.1)-(A2.3). Let Q and Qi be as in the theorem.

Define r to be the first return time of z(.) to Q after hitting (9Qj. Then, for

8



small p > 0

(2.5) sup sup Ee P' < oo.
aEAo xEOQ

The proof follows from the theorem and the non-degeneracy and is omitted.

I I I II | I II I I I9



3. Ergodic Properties of (1.1)

By (A2.1)-(A2.3) and Theorem 2.1, for each a E A0 , x(.) is a recurrent

strong Feller process. Let P(x,t,A I o) denote the transition function. By [2],

[3], there is a unique invariant measure p(a) with p(Rr , o) and

P(x,t,A I a) 14 p(A,a) as t - oo, for each Borel A. For t > 0, P(x,t,. Ia)

has a bounded and nowhere zero density with respect to Lebesgue measure and

so does p(a).

We next state a representation of p(a) first used by Khazminskii [2] and

which is very useful for analysis. The representation is useful largely because

it is hard to work with ergodic problems and to deal with questions concerning

convergence to invariant measures when the state space is unbounded.

Let G1 D G be compact sets, each of which is connected and is the closure

of its interior. Denote the boundaries by F and r, resp., and let G be strictly

interior to G1 . Let r and r, be differentiable. Define the stopping times:

r' = inf{t:z(t) E rI

r- = inf{t:x(t) E r},

r' = inf{t > r1:x(t) E ri.

For n > 1,

rn = inf{t > Tx:z(t) E r},

r,' = inf{t > rn:x(t) E rl}.

For x = z(O) E F, we use r to denote r2 - r, = r2 , the canonical "return" time

to r.

10



By Theorem 2.1, for small p > 0,

(3.1) sup Efr < oo, sup E~e"T < oo.
zEr,aEAo xEr,cEAo

Let a E A0. Define the process X = z(rn). By [2] and (A2.1)-(A2.3), {Xn}

is a recurrent homogeneous Markov chain on r. Let P(z, n,. I a) denote its

transition probability. It has a unique invariant measure j(a).

The chain is also defined for initial condition z = fo E G. Even though

Xn E r, for n > 1, it will be useful to use G as the state space in Section 6 and

afterwards in order to unify the notation with that for the approximations. The

results up to Section 5 hold with this change.

Define r(A) = fo7 IA(x(s))ds for Borel sets A. Then we can write [2,3]

(3.2) p(A, o) = i(A, a)/P(Rr, a),

where

P (A, a) = j (dx,a)Er(A).

Hence, for bounded measurable f(.), we have the representation

(3.3) (p(a), f) fr A(dx, a)e f( f (x (s))ds
fr A (xa) E.,

Equation (3.3) and various approximations to it will be widely used in the sequel.

Properties of {, }. The chain {X,j on state space r is said to be uni-

formly 0-recurrent (for a given measure 0 on the Borel sets of I) if for each

Borel B E r with O(B) > 0

P'{Xi E B, some i < m} - 1 as rn - oc;

uniformly in x E r. A sufficient condition [4, p. 29] is that if O(B) > 0, 3n < OC,

c > 0 (which can be B-dependent) such that

(3.4) P({X. E B, some i < n) > e, all x E r.

11



If the chain is 0-recurrent and a-periodic then 3C < oo, y < 1 such that for

Borel sets B

(3.5) jP2 {,k. E B) - (/, , )l CYn,

and for bounded measurable f(.),

(3.6) IE.f(Gn) - P1 < 2C-"11f - P11,

where 11fl = sup If(x) and fQ = (Pi(a), f).

The next theorem follows from [3, p. 339, proof of Theorem 5.1 there]. The

model in the reference does not explicitly include a parameter a, but it is easily

seen from the proof of the cited theorem that the non-degeneracy and the fact

that the moment bounds in Theorem 2.1 do not depend on a E Ao implies that

(3.4) is uniform in a E A0 for some c > 0. In fact, we can use n = 1. Actually,

we will only need the result for a = ao.

Theorem 3.1. Assume (A2.1)-(A2.3). {X } is O-recurrent, where 0 is

Lebesgue measure on r. The recurrence is uniform in a E Ao in the sense that

the mean recurrence times are bounded uniformly for a E Ao. There are C < 00,

-y < 1 (not depending on a E Ao) such that (3.5) and (3.6) hold.

It will be seen below (Lemma 4.1) that P(x,n,B c,) is continuous in x,

uniformly in a, B. (The continuity is proved in the above reference [3], but we

give a different proof since the details to be used will be needed elsewhere in

the paper.)

12



4. The a-Derivative of j(a) (Setwise sense)

Let C(r) denote the set of bounded and continuous functions on r, and

CC(r) the centered functions: fi E C,(J7) if fi = f - j for f E C(F), where

f =< /(ao), f >. In order to prove the differentiability of p(a) at a0 , we first

prove that of j(a), and then use (3.3).

Definition. ji(a) is said to be differentiable at ao in the setwise (or weak)

sense if there is a finite signed measure v such that for each Borel set B

v(B) = l o[n (Bao + ba) - (Boao)] /a.
ba-0

ji(a) is said to be differentiable at ao in the sense of weak convergence (or weak*

sense) if there is a finite signed measure v such that for each f E C(F),

(v, f) = imr (jI(ao + a) - j(ao), f)/,a.
6a-0

Definition. Let LcO(F) denote the bounded Borel measurable functions on

r. For any Borel set H, let B(H) denote the Borel subsets of H. Define the

operator P(a) on LI(r) by P(a)f(x) = E f(X 1 ).

Lemma 4.1. Assume (A2.1)-(A2.4). Then the set {P(a)L-(r), a E A)

(restricted to functions with 11f 11 < 1) is equicontinuous.

Proof. Define the process y(.) by y(O) = x and

(4.1) dy = a(y)dw.

Define

G(u,v) = [o-'(y(s))b(y(s), a)]'dw(s) - 1 0,-I1(y(s))b(y(s),,) 12ds.

13



Given c > 0, there are T2 > 7'1 > To > 0 such that for all a E A0 and x E r,

(4.2) P.a{rT > T 2 } <:e, Pa{r < T} <E

(4.3) E. exp (To,T) = 1.

(4.4) sup E exp2 '(0,TI) < K2 < o,
xEr,aEAo

(4.5) El 12 1exp *(0, To) - 112 <

Let r12 = (r A T2 ) V T1. By (4.2), we have

IE.f (Xi) - E~f(x(rl2 ) :S 4elf 11.

Write

E-*(T12)) = E'E'(T,)f(X(r12 )) = Efl(X(T1)),

where fi is defined in the obvious way and IIflI -< 1II/ . By use of a Girsanov

measure transformation, (4.4), (4.5) and Schwarz's inequality, we can write

E'fi(z(T)) = Efi(y(Ti)) exp 4(0, T)

= E Ea(T)fl(y(Tl))exp (To,TI) +E'

= Ef 2 (y(To)) + C',

where I[E'l[ < gEK1 [f[j, f2 is defined in the obvious way and 1112ij _ 11f1. Note

that f2 depends on a but y(To) does not.

By the above estimates and arbitrariness of c, we need only show the equicon-

tinuity of the set {E f 2(y(To)):Af2 j1 __ 1, a E A0 , f2 E L1(F)}. Since y(To)

has a bounded density with respect to Lebesgue measure, using characteristic

functions, we can write

Ef 2 (y(o)) - (2 J f2 (y)dy 1{00 "0(exp - iu'y)E.a exp iu'y(To)du}.

14



We have

E,' exp iu'yCTo)l 1_< exp -O0(i uI'),

where O(.) can be chosen independently of x E r and a E AQ. Also, the

bracketed term is the density (modulo a proportionality factor 1)) of y(To)

and is bounded by exp-O(y[2 ), where O(.) can be chosen independently of

x E r and a E A0 . Thus, we need only prove that

/, exp iu'y(To)

is z-continuous on each bounded u-set. But this follows from the Feller property

of y(.). Q.E.D.

Corollary. Assume (A2.1)-(A2.4). Then the transition function

P(z,n,B I a) = EIB( ) is continuous in x, uniformly in B, n and a E A0 .

Also Pi(B, ao + 6a) -,/ (B, ao), uniformly in B E B(1).

Proof. The first assertion is a direct consequence of the lemma. Let g E

L'(r), 1jgjl < 1. Then, by the invariance of P(a),

(W,(ao + 6a), g) = J ,(dx, a0 + 6 a)E. o+g(Xi).

A measure transformation argument and the continuity of b(.) can be used to

show that, as t5a - 0, E.0+6 1g(XI) converges to EOg(Xi), uniformly in x E I'.

The latter function is continuous on r by the lemma. In fact the continuity and

the convergence is uniform in g. From this, the invariance of P(ao) and the

weak convergence P(ao + 6a) *. P(ao) (see Lemma 4.3 below), we have

lir ((ao + 6a), g) = Pf(dx,ao)E.Og(Xi)
=f
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where the convergence is uniform in g: 11g[I : 1. Q.E.D.

The next lemma will be used to get the differentiability of p(a) at a0 from

that of A(a), via (3.3).

Lemma 4.2. Assume (A2.1)-(A2.5). Then for f E L'(F), as ba -- 0

[P(a0 + a) - P(ao)]f/6a

converges (uniformly in x) to the function with values Eof(Xi)Z(r, ao). The

limit is continuous and the convergence is uniform for f: I1f 11 < 1. The set

f{E 'oZ(7, o)I (-; ), 11fI11< 1, f E L'(r),o a A s}

is equicontinuous. The same result holds for the convergence

E ia ob f(.(s))ds - E. o  f (x())ds

- E o j f(x(s))ds Z(r, ao) = E;" j f(x(s))Z(s, ao)ds.

Proof. The proof of the last assertion is very similar to that of the prior

assertions and will be omitted. By an argument analogous to that of Lemma

4.1, we can prove the equicontinuity of the cited set of functions. We will prove

only the first assertion of the lemma. For T < oo, via a Girsanov measure

transformation,

Eo+6 of (x (r A T)) - E.'0f (x (7 A T)) -E
0

b( = E,0 f(z(rAT))[exp (0, T; ao, 6a)- 1]/6a

(4.6) - EOf(x(r A T))[exp (O, rA T;ao, 6a)- 1]/.

We have, by (A2.5) and Theorem 2.1,

lim lim E ° [exp (O, rA T;oa) - 1)=
a-0T-oc ' 6a Z(r, cro)]
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where the limit is attained uniformly in z E r. The first assertion of the lemma

follows from this and (4.6). Q.E.D.

The next corollary shows that the setwise derivative of A(a) at ao is abso-

lutely continuous with respect to j(ao).

Corollary. Assume (A2.1)-(A2.4). Define the set function i by

i(B) = lim 1 j (dxao)[1(z, 1, B I ao + 6a) - P(z, 1, B Iao)].
6r-O 6cr ,

Then there is G E L' (P(co)) such that (i(cko), G) = 0 and

v(B) = lB (dx, a0)a(z).

The limit is uniform in B.

Proof. By the lemma, the limit is

Ir P (dx, o0)E.'° OZ(7, a0)IB (-'7),

and the limit is taken on uniformly in B. (In fact E.oZ(r,CVo)IB(fC1) is con-

tinuous, uniformly in B.) Both i(ao) and the measure defined by the limit

are mutually absolutely continuous with respect to Lebesgue measure, since

the transition probability P(x, 1, I ao) is. Let G denote the Radon-Nikodym

derivative of with respect to P(ao). Since E OZ(r,oto)IR,(Xl) = 0, we have

(P(ao), G) = 0. Q.E.D.

Lemma 4.3. Assume (A.1)-(A2.4). Then i(ao + 6a) , ji(ao).

Proof. The proof follows from the uniqueness of A(ao) and the convergence

P(z,1,B I ao + 6b) -- P(z,1,B I co), uniformly for z E F (Lemma 4.1), and

the details are omitted.

17



Definition. Let L'(r) C L(F) be the 'centered' subset for which (ji(ao), f) =

0. We identify functions in L (r) which are equal a.e. (Lebesgue measure).

The following lemma is a key result for proving the differentiability of j(a)

at ao. The representations used occur throughout the sequel.

Lemma 4.4. Assume (A2.1)-(A2.4). Then (I - P(co)): L'(F) -- L'(F)

is invertible.

Proof. The fact that P(ao) maps L'(F) into LO(r) follows from the fact

that ji(ao) is an invariant measure for the transition function P(x, n,. ao). We

prove the invertability by simply exhibiting the inverse. Let f E L'(F). Then

it is easily seen from (3.6) and the definition of (I - 5(ao)) that the "inverse"

defined by

(4.7) (1 - P(aa))- 1 f() P(a)f(x) = -E °f(:n)
n=0 n=O

satisfies our needs. Q.E.D.

Corollary. Assume (A2.1)-(A2.4). Then (I - P(ao)): C(r) -. C(F) is

invertable.

Proof. By Lemma 4.1, P(o)Cc(r) C C,(r). The rest of the proof is as for

the lemma. Q.E.D.

Theorem 4.1. Assume (A2.1)-(A2.5). Then ja(ao) exists in the sense of

setwise convergence and satisfies, for f E L'(1),

(4.8) (A.(ao), f) = ( 0(O), P:(co)f) + (jo(ao), P"(co)f),

where

P.n(oo)f(x) -- E' f(n)
da (~I

18



Proof. For f r LOO(r), we have

(W() - (ao), f) = (0 (a), P f) - (ji(o0), P(ao)f)

(4.9) = (ji(a) - f(o),/5(o)f) + (ji(o), (P(a) - P(oo))f)

+ (/i(s) - i(o), (/3(c) - P(o))/).

Write 6j(o) = A(a) - (ao) and 616(o) = P(o) - /(oo). Then, (4.9) yields

(4.10) (6j(o)/6,(1 - P(oo))f) = (j(ao), 6P(a)f) + (_(__),--_- f).

By Lemma 4.2 and either Lemma 4.3 or the Corollary to Lemma 4.1, the

second right-hand term in (4.10) goes to zero as a -* 0 (uniformly in f: Illl <

1).

For g E L'(F), define (use Lemma 4.4), f = (I - P(ao))-g. By Lemmas

4.2 and 4.4

6P(Q) (I p(ao))-g

converges (uniformly in x) to the function with values

E°f(Xi)Z(r, ao) = E,"[Z(r, ao) j_ EOg(n) ] -x).
n=O Y=91

which is in C(F). Hence

(4.11) lim (A(a)/6ag) = (W(ao), ).
60-0

Since g E LO(r), and L'(F) = L' (r) modulo constant functions, (4.11) gives

the desired setwise convergence.

The formula (4.8) follows in a similar way. Q.E.D.

Corollary. Assume (A2.1)-(A2.5). Then i (ao) exists in the sense of weak

convergence.

19



Remark. The corollary is obviously a special case of the theorem. But,

it can be proved directly via the method of proof of the theorem, simply by

replacing all L'(r) by Cc(r). This remark will be useful when working with

the approximations in Section 7, since there we will have to work with weak

convergence only.

Now that the existence of jia(ao) is established, we can turn our attention

to P'(0O).

Theorem 4.2. Assume (A2.1)-(A2.5). Then pa(ao) ezists in the sense of

selwise convergence, and for f E Lo"(Rr),

), = R o) [ o)(d, o)Eo f(s())Z(s, ao)ds

+ jIfa(dx ~a)E-', I f ((s))ds]

(pJW ao) )2 [jj(dx, ao)E'o fZ(s, cto)ds + j (dx, o() E' 7

(4± f(da)E. f f (x(s))ds1
(4.12) [do I f j(dz,a)Er j1

Also p,,(ao) is absolutely continuous with respect to Lebesgue measure and has

finite variation.

Proof. Let f E L°O(Rr). Define 6 p(a) = p(aO + 6b) - p(ao) and de-

fine 6p(o) analogously. Define the operator P(a) on LOO(R t ) by P(o)f =

E, fo f(z(s))ds. Let e denote the function which is identically unity. We nced

to show the differentiability of

(W(), P(o)f)/(j(o), P(o)e) = (p(o), f).

It will be sufficient to show the differentiability of the numerator only. This will
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be the first bracketed term in (4.12). We can write

1 [(Wa + 6o), P(OI + ba)f) - (ji(ao), P(ao)f)]ba

= (), P(Oo + W (o), (P(ao + ba) - P(ao)) f)
ba of)+((),ba

+ (b(a0), (P(0o +6 a) - P(O))
6o0

By Lemma 4.2, the second term on the right converges to the first term in

the first bracket on the right-hand side of (4.12). The first term on the right

converges to the second term in the first bracket on the right-hand side of (4.12)

by Theorem 4.1 and the fact that P(ao)f E C(r). Similarly, the last term on

the right goes to zero. The representation (4.12) implies the absolute continuity

assertion since it equals zero if f = 0 a.e. (Lebesgue measure). It also implies

the finite variation. Q.E.D.

Theorem 4.3 essentially says that the a-derivative of E'f(x(f)) equals that

of (ii(a), f) for large t.

Theorem 4.3. Assume (A2.1)-(A2.5). Then for f E L'(Rr),

lim d ip(dx, a)E.f(x(t)) ,=( , = d

(4.13) - lir J,(dx,oo)(E'Of(x(t))),

td 0 fX

lim d p(dx, o)E f(x(s))dslo=(,o
t-,:' doJ

(4.14) =lir it(dx,ao)(E f (x(t))),

and the limits exist.
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Proof. By the differentiability proved in Theorem 4.2 we can write

o' I p(dz, a)f(z) = - J (dz, c)Ef(z(t))Io0

(4.15) = f p.(dx,ac)E-f(z(t)) + f p(dz,oo)(E ° f(z(t)))a.

As t - oo, E0of(z(t)) -. (p(ao), f) for p(ao)-almost all x. Since pU(ao)

is absolutely continuous with respect to Lebesgue measure (Theorem 4.2), and

p(ao) and Lebesgue measure are mutually absolutely continuous, we have that

p,(ao) is absolutely continuous with respect to p(ao). Also (p.(ao), constant

function) = 0. These facts imply that the first term on the right-hand side of

(4.15) goes to zero as t - 00, which yields the assertion concerning (4.13). The

expression (4.14) is proved in the same way. Q.E.D.
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5. A Discrete Time Approximation

Since the paths of z(.) and w(.) are not physically available, we cannot eval-

uate (1.5) or use Theorem 4.2 or 4.3 as stated to get estimates of the derivatives

< p(ao), f >,, via the use of paths of z(-) or w(.). We need to work with com-

putable approximations to x(.) and w(.). In [1], two types of approximations

were used for the finite time problem: the first was a discrete time approxi-

mation, and the second a Markov chain approximation. Each one has its own

advantages, but simulation studies indicate that their overall numerical prop-

erties are similar. We will work with the discrete time approximation here. In

this section, the approximation is defined. Some necessary stability results are

proved in the next section. Among other things to be shown, the robustness

properties of approximations to derivatives of invariant measures and ergodic

costs will be clear.

For A > 0 and 6u,(nA) = u,(nA + A) - w(nA), define {X"} by X =- x

and

(5.1)= X6' + Ab(X4, ao) + a(X4')6w(nA).

Define the interpolation x'(.) to be the piecewise constant (on intervals

[nA,nA+ A)) process with xz'(nA) = X11 . Define ZA(.,ao) to be the piecewise

ccnstant (on intervals [nA, nA + A)) process with value at hA:

n-1

Z" (71., Ck ) = E [a -I(XI, 0O)b. (X? , ao')] 'U'(i'A)
i=0

n-I

- [b~(X4,ao)a-'(X1)] [MA~ - Ab(X4,ao)],
i=0
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where bX - XA _ - XA. For T = N/A, [1, Section 4] shows that

N-1

Q (ao) = A~ [k(X nA, ao)ZA(nA, ao) + k.(X", ao)]
n=0

+ ko,(X(,ao) + ko(X1,ao)ZA(NA,ao)

or the centered form

N-I

OA(ao) - Z A[(k(X4.o) - Eaok(X", oo))Z"(nA, oo) + k,(XA, ao)]
n=0

+ ko,.(X',ao) + (ko(X ,ao) - ka'O)ZA(NA , ao)

are appropriate approximations to (1.5). The QA(ao) will have the smaller

variance.

In fact we have

E.o'0'(oo) = E.oQ'(ao) = d [E IT k(xA(s), a)ds + ko(x'(T),"a) o

and we have the weak convergence

(zI,(., a), QA(0,), a(a), () X& (Z(-, 00), Q(0), Q(a), X(.)).

We will obtain various 'infinite time' extensions of this result in Section 7.

Analogous to the comment below (1.5), to reduce computation while ex-

ploiting the (variance reduction) advantages of the centering, in the simulations

we replace E.*Ok(XA, ao) by E Ok(X N , ao), with good results in general.
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6. Stability of The Approximation

An analog of Theorem 2.1 is needed for the {XA} process. We will require

the following additional condition

A6.1.

(a) V.(x)b(z,a) - -00 as IxI -* oo, uniformly for a E A0 .

(b) lim inf inf M (x)b(x, ) >0.
(r- o I6(r,o)(

Theorem 6.1. Assume (A2.1)-(A2.3) and (A6.1). There is a compact set

Q such that for each compact Q1 D Q, we have for small p > 0, b > 0, and

A<6,

(6.1) sup sup EOexppra < 00,
aEAo xEQ,-Q

where rI = min{t:X(t) E Q}.

Proof. Let X" = x. For some K0 < o0, we have

A = E. expp[V(XA) - V(x)]

<E,, exp p[V'(z)(b(z, a)A + a(z)w) + Ko(16w12 + b(z, a )12&2)].

,'Tote that for 2rkA < 1,

E2 exp k bw12 < 1/(1 - 2rkA).

Thus, for small p, A and ki > 0, 1/k, + I/k 2 = 1, H61der's inequality yields

E. exp p[V(x)o,(x)w + KOI6wI 2]

5 [exp kp 2A V(z)a()V.(z)/2Ilkl (1- 2rpk2KoA)/k2
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Thus, for small p, A and k, fixed near unity,

A < exp p(V. (z)b(z,c )A + Ko0b(z, )IA2&

+2pAV.(x)a(x)V(x) + 4rKoA].

Thus, there is a compact set Q and C, > 0 such that for small p and for x V Q,

A < exp-2peiA. Thus for small p and x V Q,

E, exp pAE, • exp pV(X) < exp pV(x).

Hence

EO expp' 1 r •exppV(z(rA)) : exppV(x),

which yields the result, as in Theorem 2.1. Q.E.D.
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7. Ergodic Properties of {X'}

We now set up the machinery so that results analogous to those in Sections

4 and 5 and the limits as A --* 0 can be obtained. Define r, G, r, and G1 as in

Section 3. Define the stopping times:

rA' = inf{t:Z(t) V Gt - F I

rA = inf{It: Z(t) E G},

r A = inf{t > rj::xA(t) V G, - ri}.

For n> 1,

= inf{t > rf l:xA(t) E G}

rA'= inf{t > rnA:zA(t) 0G. - rl}.

For x = xA(0) E G, we use r to denote r2 - rA = r2, the canonical return

time to G.

By Theorem 6.1, there are G, G1 such that (e.g., lt G equal the set Q of

Theorem 6. 1)

(7.1) sup E r a < oo, sup Eexppra < o,
XEG,OEAo :EG,aEAo

for small p. Define X' = xA(rn). For a E A 0, the process {X', n > 01

is a homogeneous positive recurrent Markov chain with state space G. Let

A6(x, n,.I a) denote the transition function. There is a unique invariant mea-

sure a(o). Analogously to the situation in Section 3, define the following:

r(A IA(xA(s))ds, A = Borel set in R',

PNA(A) = a (d' ,a)ErA (A)

PA (A, a) (A, a)/Pa (r , a).
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The same argument used to show that p(a) is invariant for z(.) ([2], p. 183) can

be used to show that pA(c) is invariant for {XA}, under parameter a. We can

now write for bounded measurable f:

(7.2) (p"(a), f) = h (dz'a)Ef 0 f(s

fG DA(dz,a)E rA

Let LI(G) denote the set of bounded Borel measurable functions on G.

Define the operator PA(a) on L' (G) by P'(c,)f(x) = ETaf(, 5 ), x E G.

Lemma 7.1. Assume (A2.1)-(A2.4) and (A6.1). Then the set {PA(a)LO(G)

(restricted to Ilfil - 1), A > 0, a E Ao is equicontinuous.

Remark on the proof. Define the process A(.) to be the piecewise con-

stant interpolation (intervals [nA, nA + A)) of the process defined by i7" = X,

YA-11+ = ia + e(Y,) 6 w(nA). Then p'(.) = y(.), defined in Lemma 4.1. Define

the Radon-Nikodym derivative expA (0, T), where

0l=

1 T/A -I
-

n=0

From this point on, the proof is nearly identical to that of Lemma 4.1 and is

omitted.

Theorem 7.1. Assume (A2.1)-(A2.4) and (A6.1) and let a = ao. Then

, 4 fC if Xo> fCo, and PII'(ao) =* i(ao). In addition E.?Of(X?) A

Eof(Xk) uniformly in z E G and in f in any equicontinuous set with Ilfil _ 1

Also, fP1 (ao + 6a) A4 j'(ao) and pl (ao) =: p(ao). Finally,

( 0A(0),f) .. . ( (ao),f) = p0,
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uniformly for f in any equicontinuous set with If 11 < 1.

Proof. Note that (z'(.), r') - (z(-), r) uniformly in z E G in the sense

that E*oF(z'(.), r') -- E.oF(z(.), r) uniformly in z E G, for any bounded

and continuous real valued F(.). The weak convergence kk =: -,k (if X0 =

-Xo) follows from the uniform integrability of {r', A > 0, a E Ao} and the (uni-

form) weak convergence of z'(.) to z(.). The asserted weak convergence can be

proved by a standard martingale method [5], [6] (and using the non-degeneracy

of a(.) and the smoothness of F, r, to get the weak convergence of r'). In fact,

a standard weak convergence method can be used to get P3A(ao)f - P(oo)f,

uniformly in f in any equicontinuous set in C(G).

Now, for f E C(G), by the invariance of pA(ao), we can write

(ji(ao),f) = (P (Oo), PA(ao)f)

{jjA(oo), A > 0) is obviously tight since G is compact. If Ai(ao) is the limit of

a weakly convergent subsequence, then by the last expression, we have

(P(Oo), f) = (/(ao), P(ao)f), f E C(G),

which yields fi(oro) = P(ao).

Now use (7.2), the weak convergence {rA,ZA(.)} * {r,x(.)} and the uni-

form integrability of {rA} (Theorem 6.1) and PA'(ao) =:, j(a 0 ) to get p'(ao) =

p(ao). The last assertion of the theorem is also proved by an argument by con-

tradiction and the proof is omitted. Q.E.D.

An analog of (3.6). The following lemma is needed to get an analog of

Lemma 4.4.

Lemma 7.2. Assume (A2.1)-(A2.3) and (A6.1). Let k be such that Cjk =
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A < I (see (3.5)). Let C'(G) C C(G) be an equicontinuous set. Then

(7.3) Ef(Xo sup E kf( 0 A1 <°A.
fEC'(G) llf - fa'.11 -

Equivalently, there are il' < 1, C < oo, such that for small A > 0,

(7.4) IjP1f(ao)7f - f '° ! CI'- ,-°.

Proof. Suppose that (7.3) is false. Then there is X, - z E G, A, - 0,

A, > Ao > A, f, E C'(G), fn - f E C'(G), such that

k > An.itfn - fn'"'a °11

Without loss of generality, we can suppose that the infima of the denomenators

are positive. Then we can write

IEYof(Xk)- fooI > IEfo fn(X)- ]Gck

IJ-f - i."0jj- 11A - f!' °011

(7.5) 1 (Eof (: - E]f', f(kA )I _If'o - '°1

The last two terms on the right go to zero by the weak convergence : k"- =:> k

(initial conditions kA = Zn, X0 = X, resp.), and jA-(ao) =; j(a0), and the

convergence f, - f. The left side of(7.5) goes to IE.of(Xk)-°jQo/Ijf-jofl <

Co k = A and we have a contradiction.

Inequality (7.4) follows from (7.3) by letting Ok = (A + 6A) for small 6A > 0,

ard iterating. Q.E.D.

Lemma 7.3. Assume (A2.1)-(A2.5) and (A6.1). Then for f E L'(G),

[fP (Qo + 6cr) - P4 (o0)]f
60

30



converges (as ba -- 0) to the function P1(ao)f with values

E~oZA(rA, to)f(X ) =- E~f(XfE)a (.

The limit is continuous and the convergence is uniform in A, z E G, and in

f E C(G) for Ilfll -< 1. The set {E OZ'(r',ao)f(f"), A > 0, f E C(G),

Ilfil < 1} is equicontinuous.

The same result holds for the convergence

1 [E'o+" I f(xA(s))ds -E_ 0 j f(x'(s))ds]

"- j f(x"(s))ZA(s,°ao)ds.

The proof is analogous to that of Lemma 4.2 but uses the Radon-Nikodym

derivative introduced in the remark under Lemma 7.1, and is omitted.

Theorem 7.2. Assume (A2.1)-(A2.5) and (A6.1). Then ji(ao) and

p,(ao) exist in the sense of weak convergence.

Proof. Let Co'(G) be the subset of C(G) for which (f,,A'(ao)) = 0. Fol-

lowing the proof of Lemma 4.4 and its corollary, we first show the invertability

of (I - PA(co)) on C,(G), on which we identify functions which are equal a.e.

(i'j(ao)). By Lemma 7.1 and the fact that jiA(ao) is an invariant measure

for the transition function which defines PA(a 0 ), for f E Co(G) the sum be-

low converges and we have (I - PA(ao))C"(G) C C,(G). By Lemma 7.2, we

obviously have

(I - kl(a0)) E(PANa))rf = Z(PA(o 0))r(I - PA ))f = f.
n o n=0

These facts yield that the inverse is

00

(7.6) g = (I - 5P'(oo))-If = Z '6(aO))rf.
n=O
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By Lemmas 7.1 and 7.2, the sum on the right side converges uniformly in A

and it is equicontinuous for f E CQ(G), Jlfj) < 1, A > 0.

We can now use a proof analogous to that of Theorem 4.1 (but using

weak rather than setwise convergence) together with Lemma 7.3 and the weak

convergence pA(ao + 6a) =* jiA(ao) to get the existence of A(ao) in the

sense of weak convergence, and the few details are omitted. To get the ex-

istence of pA(ao) in the sense of weak convergence, use the representation

(7.2) and the a-differentiability of PI'(a), E, fJo f(x4(s))ds at a = ao, and

Exa rA > 0. The details are like those of Theorem 4.2, but uses the equicon-

tinuity of {E, fo°" f(xA(s))ds) (in f E C(G), A > 0, jjf11 < 1, a E A0), the

weak convergence, and the uniform integrability of {r A , small A > 0,a E Ao).

Q.E.D.

Corollary. Assume the conditions of the Theorem. Then jiA(ao) exists in

the sense of setwise convergence. Also {fAA(ao), small A > 01 is of bounded

variation. For g E L'(G), there is a unique f E L'(G) such that

(I - PA (a0))= g - °

and j~", - 0.

Proof. Let f E L (G). Analogous to (4.9), write 6P(a) = PA(a0 + ba) -

/5A(ao), 6j 4 (a) = ii(ao + ha) - pA(a 0 ), and

WIPa(ao~f>(7.7) < ba f >=< ba , ]54(a0)f >

+ < 6,611(a, _ > + <  6kaP) 6 f >

ba ba

By Lemma 7.3, (6P1(a)[6a)f converges to a continuous function, uniformly

in z E G. This and 6hAA(a) 4 zero measure implies that the last term on the
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right of (7.7) tends to zero, as ba - 0. Furthermore, since pll(ao) exists in

the sense of weak convergence by the theorem. The second term on the right of

(7.7) tends to < A" (ao), P (ao)f >.

Since P'(ao)f is continuous (Lemma 7.1), and j2(ao) exists in the sense

of weak convergence, the first term on the right tends to < Al(a),PA(a0o)f >.

Thus the limit of the left side of (7.7) exists. Now, the form of the limit of the

right side implies that P5(ao) exists in the sense of setwise convergence.

Rewrite (7.7) as

< Aa"(0o), (I - P"(O0))f >=< AA(ao), PA(ao)f >

For g E L'(G), set = g - §11,o0 and define

00

(7.8) f, Z(PA(ao))n§
n=O

00

= + (pI(C0))"(ao)§).
n=O

The sum converges uniformly in g, A, for 11 g f f5 1, since {IP-(ao)g, A > 0, g E

L0 (G),IgII < 1) is equicontinuous by Lemma 7.1. The uniqueness assertion

follows.

Thus

(I - PA(ao))fw =

and

< t a)#>=< OA(0)g >=< hA(ao),/P"(ao)f 1 >•

The bounded variation assertion follows from this representation. Q.E.D.

The convtergence Theorem for the discretizations.
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Theorem 7.3. Assume (A2.1)-(A2.5) and (A6.1). Then ,i(ao) converges

setwise to j a do) ,,d P(co) converges setwise to pQ(ao).

Proof. Let f E L'(G). Let ga and g, resp., be the unique solutions in

LO(G) (Theorem 7.2, Lemma 4.4) to

(I - PNao))gA = f -fico

(I - P(Go))g = f - P.

Note that

da
( < ) g )lo.o= (ji (& o), g '

-- (j (ao), P>A(co)g") + (i"(a o), P2(ao)g").

Then we can write

(P(ao), f) = (AO (Oo), f-- Qo) _

(7.9) = ( (o), (I - J6, (ao))g,)

We have

ddE g 2?lo. = Xg"R)Z '(r4 , o).

Now, note that the sum in (7.6) converges uniformly in A (Lemma 7.2): hence

g -a- g, since /'(ao)"f - f'(ao)"f. Using this, the weak convergence of

{Xf, ZA(rA, a0)}, the uniform integrability of {Z A (TA,aO), A > 01, the fact

that the functions on the right side of (7.9) converge uniformly in x E G to

the continuous limit, and the fact that /A(ao) *:4 A(o0) yields that the limit as

A -- 0 of the right side of (7.9) is

J j(dx, oo)E'Og(i )Z(r, ao)= Jii(dz, ao) E.g(Xj )L o =
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(i(oto), (i - P(aro))g) = (A(ao),f - ipo) = ( f(o),f).

Thus

(ja(ao),f) -* (iic(QO),f)

which yields the setwise convergence of fi'(ao) to Pa(ao). The setwise conver-

gence of pA(ao) to p(ao) follows from the representation (7.2). For example

to get the limit of the derivative of the denominator of (7.2), note that the

derivative of the denominator is

fI (d,o 0o)EOrA + L (dxao)-

Then use the representation

dEar& c'r za(ra ,Co),
da, L00=E

and the proved convergence and uniform integrability (where appropriate) re-

sults for j1o(oo), XA(.),rl,ZA(rA, o). Q.E.D.

A finite time appr,,rimation Theorem. The next result shows that the deriva-

tive (p.(ao), f) of the ergodic cost can be arbitrarily well approximated by

g- Eraf(xA(t)) = ° for large t and small A. It is such approximations that are

actually used in the applications. It is important to note that for large enough

t, the quality of the appr )ximation is uniformly good in (small) A.

Theorem 7.4. Assume (A2.1)-(A2.5), (A6.1). Then for f E L'(Rr),

(po(oto), f) = lim (a o), f)

(7.10) = lim (dx, ao) d-EE f(x

where the limits as A - , 1 - cc can be taken in any way at all.
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Proof. Write, by the invariance of pA(a) and the differentiability:

d
d" (a), f)a=.o = (pa (ao), P(ao, t)f)

(7.11) + (P"z(ao), P.aOo, O~f),

where PA(ao,t)f(x) = E.Of(xz(t)) and t > 0. We have P/'(ao,t)f -- Po

< p(ao), f > as A - 0, t --- oo. Also, {f (ao), A > 01 is of bounded variation

by the corollary to Theorem 7.2. Thus (p/(ao), Pi(ao,t)f) -* 0 as A ---, 0 and

t -- o,, which yields the theorem. Q.E.D.

A pathwise result. With the approximation of Theorem 7.4 in hand, we can

give the pathwise result. Since we only have one long realization and cannot

explicitly calculate the derivatives of the expectations, we need to show that a

long simulation of {X', n < oc) can yield a good approximation to the right

side of (7.10) for fixed A. Typically, the t o in Theorem 7.5 is as large as can be,

consistent with a modest sample variance.

Theorem 7.5. Assume (A2.1)-(A2.5) and (A6.1). Fix t = nA. Let f(.) be

bounded and continuous. Then as T -* oo (or with centered f used as discussed

in Section 5)

1IT [Z +a (tO + 8, Oro) - Z&(s, ao)]f(x&(to + s))ds
To

(7.12) Xfofxlt)

= (/JA(oo), dEOf(x(to))Io).

Proof. Fix to. Define 6Zl(to, s) - Z&(to+s, o) - ZA(s, oek) and Y"(to, s) =

6ZA(to, s)f(xA(to + s)). Then the process (parameter T) defined by

M"(T) = [Y"(to, s) - E7,0(,) ""'(t,, s']ds
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is a zero mean martingale whose variance is O(T). Thus Kronecker's Lemma im-

plies that MA(T)/T - 0 w.p.1. This implies that for the purpose of evaluating

the limit of the left side of (7.12), we can replace it by

(7.13) -1 q(z'r(s))ds,

where we define

q(ZA(s)) = E',O.()YA(tO,s) = dE.(,)f(x"(to +

The function q(.) is continuous and bounded. Then, the ergodic properties of

{X , n < co) imply that (as T -- oo) (7.13) converges w.p.1. to its mean value

(p((ao), q) which is just the center term of (7.12). Q.E.D.
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8. Numerical Comparisons.

The approximation method of Section 7 has been simulated and compared

with alternative methods on a variety of problems of dimension up to seven.

Here, we comment on some comparisons with a finite difference method. The

alternative methods are all described and discussed in [1), and we will repeat

only a few of the comments made there.

The basic method used for all methods takes one long simulation, over an

interval T1 . A basic estimation interval To is given, and the approximate model

X'(.) is simulated. N = TI/To estimates of the derivative are made in the long

simulation interval, each using To units of time. Let Xn denote the state of

the system at the start of the nthsubinterval. Then XA is the initial condition

for the estimate on the (n +- 1)Bt subinterval. The detailed results reported here

are for a two dimensional problem, with the parameter a being a scalar. We

comment on larger problems later. For the finite difference estimate, a pair of

simulations must be taken, with a parameter set at ao ± ba, for some small ba.

The samples of the 6w in (5.1) for the second member of the pair was the same

as that of the first member of the pair, with the samples being independent from

pair to pair. This reduced the variance over what would have been the case if

all the samples of the 6w random variables has been mutually independent, as

in [1]. The reduction was particularly large if the system was linear, and the

cost function smooth, although there was a noticeable reduction in the variance

in all cases tested.
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The two dimensional problem was the noise driven Van der Pol equation

dzj = X2dt

dz 2 = [10Z2(1 - z2) - azl]dt + dw,

where ao = 2. Note that this system is degenerate. Nevertheless the method

works well. The cost function of interest was

j k(x(s))ds/S

for large S, where

k(z) = I{Ix21>0.3}-

The simplest estimator is

1N nT o+ To
(8.1 1 ) T°+[Z'(s, ao) - Z&(nTo, co)]k(X&(s))ds.(81 N "E o nTO"T

An "antithetic" variable method was always used since it gives a reduced vari-

ance: Let N be an even number, and let the 6w samples used for the 2n'th

estimate be the negative of that used for the 2n - l'th (n = 1,2,...) estimate,

with the 6w used for the 2n- l'th estimates (n = 1,2,... N/2) being mutually

independent.

The centered form, where k(X&(s)) is replaced by the centered k(X'(s)) -

k(nT + To), where the centering is a sample estimate of the value of the cost

at the cited time, actually gave better results. This method is referred to as the

AC-method in the tables below (antithetic variable, centered). The centering is

zero mean, but helps reduce the variance. As n -- co, (8.1) converges to

d- jp(dx, ao)Eo,-k(X(To)).
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For large enough To, this is a good estimate of the desired derivative. A better

procedure would be to divide the interval [0, To] into a reasonable number of

subintervals to get a better approximation to the first centered form discussed

in Section 5. But one must keep in mind that the CPU time required for a large

number of subdivisions might be better used for taking more samples.

A third method, called the weighted AC-method, often (but not always) was

advantageous. As s -. oo, the variance of [ZA(s, ao) - ZA(nTo, co)] goes to

oo. If the system has a "short" memory, then the "earlier" part of the Z/1(.)

process contributes little to the estimate in the following sense: Let nT + To >

s > so > nT0 , and write

[ZA(s, 0o) - ZA(nTo, ao)]k(XA(s)) =

[Z'(s, ao) - Z'(so, ao)]k(X'(s))+

[ZA(so, ao) - ZA (nTo, ao)]k(X!(s)).

Then the mean value of the second term goes to zero as s - so -- oo. But,

if we reduce the sample interval, then a bias is added. In order to balance

the opposing effects, we use a weighted substitute 2A for ZA, constructed as

follows, where A E (0, 1) is a weighing factor or exponential discount of the past:

(notation for the non-degenerate case);

2A ((n + 1)A) = (X4, 0 )ba(XAo)]'b(iA) - 2 ,A).

For the problem reported on here, this method gave excellent results. In other

cases, where the "approach to ergodicity" is slower, a substantial bias could be

introduced into the estimates.

Refer to the tables, where the sample means of the derivative estimates,

their sample standard deviations, and the required CPU time are given. For
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the finite difference estimates, N=2,500 was used, and N=5,000 otherwise. This

is because two system simulations per finite difference estimate are needed, and

only one for our method. But the important quantity is the sample standard

deviation per CPU time unit. Note that the sample standard deviation for the

weighted AC-method decreases as To increases, while that for the AC method

increases. We can readily see the advantages of the methods introduced here.

For linear systems, the finite difference method seems to work better owing to

the 'smoothness' of the dependence of the estimates on the noise, and the value

of the difference interval was not too important (did not seriously affect the

sample variance), as long as it was small enough to control the bias.

There are important dimensionality advantages to our methods. Suppose

that the dimension of the parameter is m. Then, in order to get a single estimate

of a gradient, a finite diffrcnce method needs to simulate the system either

(m + 1) or 2m times, depending on the finite difference method used (one sided

or central). Our method requires the simulation of only one sample path per

estimate, and the calculation of one Z -variable per component of the parameter.

But, the calculation of the Z-variable is usually much simpler than doing a

simulation of the system. This is particularly true if the system is of high

dimension, or if the dynamical terms are hard to compute. Thus, our methods

do require much less computer time than does the finite difference method,

particularly for high dimensional and nonlinear problems. Alternative methods,

such as the finite difference method, can compensate for this only by having a

better quality estimate; i.e., one with smaller bias or sample variance.

We emphasize that no general rule has been found which can tell us which

method would be preferable for any particular class of problems. All methods
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must be taken as serious candidates, and techniques sought for their realization

so that they perform as well as possible.
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T 0 =3

Finite Difference (6a = .05)

sample mean sample standard deviation
derivative .168 .247
cost .363 .149
CPU Time 32.04

AC

sample mean sample standard deviation
derivative .164 .216
cost .364 .127
CPU Time 18.9

Weighted AC (Derivative only)

sample mean sample standard deviation
A
.1 .160 .19
.5 .153 .14
CPU Time 20.1

TABLE 1
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T0 =10

Finite Difference (6a = .05)

sample mean sample standard deviation
derivative .157 .243
cost .364 .052
CPU Time 104.8

AC

sample mean sample standard deviation
derivative .162 .304
cost .364 .032
CPU Time 65.5

Weighted AC (Derivative only)

sample mean sample standard deviation
A = .5 .157 .106
A = 1 .150 .07
CPU Time 68.3

TABLE 2
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To = 20

Finite Difference (6& = .05)

sample mean sample standard deviation
derivative .168 .246
cost .365 .032
CPU Time 209.8

AC

sample mean sample standard deviation
derivative .168 .537
cost .365 .021
CPU Time 65.5

Weighted AC (Derivative only)

sample mean sample standard deviation
A = .5 .154 .058

A = 1 .163 .101
CPU Time 137.05

TABLE 3
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